Fixation of the 2-Methylimidazole Ligand and Anomalous Pyrrole Chemical Shifts in Bis(2-methylimidazole)(*meso*-tetraalkylporphyrinato)iron(III) Chloride Caused by the Nonplanar Porphyrin Ring

Mikio Nakamura* and Takahisa Ikeue

Department of Chemistry, Toho University School of Medicine, Omorinishi, Ota-ku, Tokyo 143, Japan

Saburo Neya and Noriaki Funasaki

Department of Physical Chemistry, Kyoto Pharmaceutical University, Yamashina, Kyoto 607, Japan

Nobuo Nakamura

Department of Material Science, Faculty of Engineering, Hosei University, Koganei, Tokyo 184, Japan

Received November 21, 1995

Variable temperature ¹H NMR measurement of a series of low spin bis(2-methylimidazole)(*meso*-tetraalkylporphyrinato)iron(III) complexes, [Fe(TRP)(2-MeIm)₂]Cl (R = Me, Et, iPr), lead to an unambiguous conclusion on the fixation of the axially coordinated ligands. Furthermore, the pyrrole ¹H signals appeared in a so-called *diamagnetic region* (δ 0–10 ppm) in the isopropyl complex (R = iPr) in spite of the $S = \frac{1}{2}$ iron spin state. The anomaly was ascribed to the nonplanar nature of the porphyrin ring caused by the steric interaction between imidazole methyl and *meso*-alkyl substituents.

Extensive studies have been done on the synthesis and structure of nonplanar porphyrins due to their relevance to the biological functions of heme proteins and related tetrapyrroles.¹ We and others have reported that the coordination of sterically hindered imidazoles such as 2-methylimidazole (2-MeIm) into (tetramesitylporphyrinato)iron(III) induces the S_4 deformation of the porphyrin ring and restricts the imidazole rotation about N-Fe bonds on the NMR time scale in solution.² The deformation was ascribed to the severe steric repulsion between the o-methyls and axially coordinated 2-MeIm.^{2b,3} In fact, recent crystallographic study of the analogous 1,2-dimethylimidazole (1,2-Me₂Im) complex, [Fe(Me-TPP)(1,2-Me₂Im)₂]ClO₄, has revealed that the porphyrin ring is highly ruffled in the solid and that the two axial ligands are placed along the cavities created by the deformed porphyrin ring.⁴ These results indicate the importance of the direct interactions between 2-alkylimidazoles and bulky meso-aryl substituents for the hindered imidazole rotation. We are then interested in examining if less bulky alkyl groups in a series of (meso-tetraalkylporphyrinato)iron(III) complexes, $[Fe(TRP)(2-MeIm)_2]Cl (R = Me, Et, iPr),^5$ can deform the porphyrin ring to such an extent as to hinder the rotation of the coordinated 2-MeIm ligands.

[Fe(TMeP)(2-MeIm)₂]Cl was obtained by the addition of 2-MeIm (7.0 equiv) to [Fe(TMeP)]Cl. Formation of the low spin bis-adduct was verified at -25 °C by the disappearance of the *meso*-methyl and pyrrole signals of the high spin complex at δ 153.0 and 102.9 ppm, respectively, and the concomitant appearance of the corresponding signals at δ 37.3 and δ -7.6 ppm. A singlet at -1.1 ppm at -72 °C, assigned to the methyl protons of the coordinated 2-MeIm based on the integral intensity (6H), further confirmed the formation of the bis-adduct. The methyl and pyrrole signals, quite unexpectedly, broadened and split into two and four peaks, respectively, on lowering the temperature as Figure 1 shows. The temperature dependent ¹H NMR spectra clearly indicate that the 2-MeIm ligands stop rotating even in the less bulky TMeP system. Medforth et al. reported the hindered rotation of the axially coordinated 3-chloropyridine and 3-phenylpyridine ligands in the (2,3,7,8,-12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrinato)cobalt(III) complex.⁶ In this case, the porphyrin ring is nonplanar in itself regardless of the axial ligands due to the severe steric interactions among the peripheral substituents.¹ In our system, even the planar porphyrin ring, as revealed by the crystallographic studies on [Ni(TMeP)],⁷ is deformed by the coordination of the hindered imidazole, resulting in the restricted imidazole rotation on the NMR time scale. Activation free energy was estimated at coalescence temperature ($T_c = -51$) °C) to be 40 kJ mol⁻¹. It should be noted that the activation free energy corresponds to the rate processes consisting of both the ligand rotation and the concomitant porphyrin ring inversion.^{2b,8} Existence of the meso-methyl groups must be crucial to observe the ligand fixation by ¹H NMR since the unsubstituted (porphyrinato)iron(III) complex, [Fe(THP)(2-MeIm)₂]Cl, gave sharp singlets for the pyrrole (δ –29.8 ppm) and meso (δ -8.5 ppm) protons even at -67 °C.

- Barkigia, K. M.; Berber, M. D.; Fajer, J.; Medforth, C. J.; Renner, M. W.; Smith, K. M. J. Am. Chem. Soc. 1990, 112, 8851.
- (2) (a) Nakamura, M.; Groves, J. T. *Tetrahedron* 1988, 44, 3225. (b) Walker, F. A.; Simonis, U. J. Am. Chem. Soc. 1991, 113, 8652. (c) Nakamura, M.; Nakamura, N. Chem. Lett. 1991, 1885. (d) Nakamura, M.; Tajima, K.; Tada, K.; Ishizu, K.; Nakamura, N. Inorg. Chim. Acta 1994, 224, 113.
- (3) Nakamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 197.
- (4) Munro, O. Q.; Marques, H. M.; Debrunner, P. G.; Mohanrao, K.; Scheidt, W. R. J. Am. Chem. Soc. 1995, 117, 935.
- (5) The synthesis and ¹H NMR chemical shifts of these complexes are given in the Supporting Information section.
- (6) Medforth, C. J.; Muzzi, C. M.; Smith, K. M.; Abraham, R. J.; Hobbs, J. D.; Shelnutt, J. A. J. Chem. Soc., Chem. Commun. 1994, 1843.
- (7) Kutzler, F. W.; Swepston, P. N.; Berkovitch-Yellin, Z.; Ellis, D. E.; Ibers, J. A. J. Am. Chem. Soc. 1983, 105, 2996.
- (8) Nakamura, M.; Ikezaki, A. *Chem. Lett.* **1995**, 733.

S0020-1669(95)01496-0 CCC: \$12.00 © 1996 American Chemical Society

^a Values at -56 °C. ^b Values at -71 °C.

Table 1. ¹H NMR Chemical Shifts of [Fe(TRP)(2-MeIm)₂]Cl in CDCl₃/CD₂Cl₂ at -35 °C

	Н	Me	Et	iPr
ру-Н <i>meso-</i> Н	$-21.7 (-27.0)^a$ $-3.6 (-6.2)^a$	$-8.2 (-6.3, -11.3, -14.4, -15.5)^{b}$	$-9.4 (-8.2, -12.0, -14.7, -15.7)^{b}$	3.2, 4.3, 7.4, 7.8
R (α-Η) R (β-Η)		38.7 (39.0, 49.6) ^b	16.9 (15.7, 16.5, 18.2) ^{<i>b</i>} 1.1 (0.3) ^{<i>b</i>}	18.4, 21.6 3.4, 4.0, 6.1, 6.9
Im-CH ₃	14.7 (16.6) ^a	$1.4 (-1.6)^b$	$2.8(1.5)^b$	-4.2

Figure 1. Temperature dependent ¹H NMR spectra (90 MHz) of [Fe-(T*Me*P)(2-MeIm)₂]Cl (10 mM) in a CD₂Cl₂/CDCl₃ solution. Signal assignment: Me, *meso*-methyl; py, pyrrole β -H; Me(Im), methyl of the coordinated 2-MeIm. Signals for free 2-MeIm are denoted by asterisks.

Introduction of much bulkier substituents would further increase the porphyrin nonplanarity and fix the conformation of the complex at higher temperature. The (meso-tetraisopropylporphyrinato)iron(III) complex, [Fe(TiPrP)(2-MeIm)2]Cl, must be a good candidate since the corresponding nickel complex, [Ni(TiPrP], has a nonplanar porphyrin ring with the meso-carbon atoms displaced up to 0.74 A.9 The ¹H NMR spectrum of [Fe(TiPrP)(2-MeIm)₂]Cl showed a broad signal (δ 16 ppm) for the isopropyl methine protons even at 25 °C. This signal split into two below 17 °C, yielding the activation free energy of 56 kJ mol⁻¹ at this temperature. Since the methyl signal of the coordinated 2-MeIm exhibited line broadening in a similar temperature range as the isopropyl methine signals, the ligand rotation in this case must proceed through a dissociative mechanism.2d In fact, saturation transfer was observed at 0 °C between the methyl signals of the free and coordinated 2-MeIm ligands. The most remarkable point in the ¹H NMR spectra of this complex is the apparent absence of the pyrrole signals in the expected high field region at ambient temperature; ferric porphyrin complexes having two imidazole ligands conventionally give pyrrole signals at around -15 ppm at room temperature.¹⁰ At lower temperature, we could observe four pyrrole signals each corresponding to 2H; the chemical shifts of these signals were determined to be δ 3.2, 4.3, 7.4, and 7.8 ppm at -35 °C based on the spectral comparison with the deuterated complex. Possibility of the reduction of ferric $(S = \frac{1}{2})$ to ferrous (S = 0) ion can be ruled out since the

isopropyl methine protons appear at fairly low field, 18.0 and 21.3 ppm at -35 °C. No example has ever been reported to exhibit the pyrrole β -proton signals at such a low magnetic field. Thus, this is the first example of the low spin bis(imidazole)-ferric porphyrin complex showing a pyrrole signal in a so-called *diamagnetic region*.¹¹ The ¹H NMR spectrum also showed four methyl signals δ 3.4, 4.0, 6.1, and 6.9 ppm at -35 °C, indicating that the isopropyl methyls became diastereotopic in the fixed conformation. The splitting patterns of the pyrrole and *meso*-methyl signals clearly indicate that the stable conformation is the one where two imidazoles are aligned perpendicularly along the diagonal C_{meso}-Fe-C_{meso} axis as in the case of [Fe(Me-TPP)(2-MeIm)₂]Cl.^{2b,c}

We have reported, based on the ¹H NMR study of 32 low spin [Fe(R-TPP)(L)₂]Cl complexes, that the chemical shifts of the pyrrole protons vary depending on the steric interactions between the porphyrin core and imidazole ligands (L); pyrrole signals of the complexes carrying unhindered imidazoles appear at very high fields (-25 to -28 ppm at -56 °C), while those of the ortho-substituted complexes with hindered imidazoles appear at rather low fields (-14 to -19 ppm at -56 °C).^{2d} The tendency was explained in terms of the nonplanarity of the porphyrin ring since the ring deformation would deteriorate the iron (d_{π}) -porphyrin (p_{π}) overlaps and decrease the spin densities on the pyrrole carbons. The anomalous pyrrole proton shifts in [Fe(TiPrP)(2-MeIm)₂]Cl would be explained similarly by the weak $d_{\pi}-p_{\pi}$ interaction in a strongly ruffled porphyrin ring. In Table 1 are listed the chemical shifts of some protons in a series of $[Fe(TRP)(2-MeIm)_2]Cl$ complexes (R = H, Me, Et, iPr). The data clearly indicate that the pyrrole signals move to lower magnetic field on going from H to Me and Et and then to iPr complexes, which is in accordance with the expected nonplanarity of the porphyrin ring.

In summary, we showed the fixation of the 2-MeIm ligand in a simple low spin [Fe (TRP)(2-MeIm)₂]Cl system together with the anomalous chemical shifts of the pyrrole protons and ascribed them to the nonplanar porphyrin ring.

Acknowledgment. This work was supported by a Grantin-Aid for Scientific Research from Ministry of Education, Science and Culture of Japan.

Supporting Information Available: Figures showing temperature dependent ¹H NMR spectra (90 MHz) of $[Fe(TEtP)(2-MeIm)_2]Cl$, ¹H NMR spectra (400 MHz) of $[Fe(TiPPP)(2-MeIm)_2]Cl$ (py-*d*₈) and $[Fe(TiPPP)(2-MeIm)_2]Cl$ (py-*h*₈) taken at -35 °C, and Curie plots of isopropyl methine and imidazole methyl signals of $[Fe(TiPP)-(2-MeIm)_2]Cl$ and text giving the synthesis of free base porphyrins and their iron(III) complexes (4 pages). Ordering information is given on any current masthead page.

IC9514962

⁽⁹⁾ Ema, T.; Senge, M. O.; Nelson, N. Y.; Ogoshi, H.; Smith, K. M. Angew. Chem. 1994, 106, 1951; Angew. Chem., Int. Ed. Engl. 1994, 33, 1879.

⁽¹⁰⁾ Bertini, I.; Luchinat, C. NMR of Paramagnetic Molecules in Biological Systems; Benjamin/Cummings: Menlo Park, CA, 1986; p 182.

⁽¹¹⁾ Some low spin ferric porphyrin complexes with low basicity axial ligands such as *tert*-butyl isocyanide, 4-cyanopyridine, and dimethyl phenylphosphonite show pyrrole protons at unusually low magnetic field. (a) Simonneaux, G.; Hindre, F.; Le Plouzennec, M. *Inorg. Chem.* **1989**, *28*, 823. (b) Safo, M. K.; Gupta, G. P.; Watson, C. T.; Simonis, U.; Walker, F. A.; Scheidt, W. R. J. Am. Chem. Soc. **1992**, *114*, 7066. (c) Guillemot, M.; Simonneaux, G. J. Chem. Soc., Chem. Commun. **1995**, 2093.